Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Article Zh | MEDLINE | ID: mdl-38660903

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Bilirubin , Chaperone-Mediated Autophagy , Microglia , Animals , Mice , Microglia/metabolism , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Cell Survival
2.
Sci Total Environ ; 927: 172069, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582117

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.


Chaperone-Mediated Autophagy , Cognitive Dysfunction , Ferroptosis , Fluorides , Neurons , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Animals , Humans , Mice , Autophagy/drug effects , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/drug effects , Cognitive Dysfunction/chemically induced , Ferroptosis/drug effects , Ferroptosis/physiology , Fluorides/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
3.
Biochem Pharmacol ; 197: 114899, 2022 03.
Article En | MEDLINE | ID: mdl-34968496

The accumulation of aggregated α-synuclein (α-syn) has been identified as the primary component of Lewy bodies that are the pathological hallmarks of Parkinson's disease (PD). Several preclinical studies have shown α-syn aggregation, and particularly the intermediates formed during the aggregation process to be toxic to cells. Current PD treatments only provide symptomatic relief, and α-syn serves as a promising target to develop a disease-modifying therapy for PD. Our previous studies have revealed that a small-molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, increases α-syn degradation by accelerating macroautophagy (MA) leading to disease-modifying effects in preclinical PD models. However, α-syn is also degraded by chaperone-mediated autophagy (CMA). In the present study, we tested the effects of PREP inhibition or deletion on CMA activation and α-syn degradation. HEK-293 cells were transfected with α-syn and incubated with 1 & 10 µM KYP-2047 for 24 h. Both 1 & 10 µM KYP-2047 increased LAMP-2A levels, induced α-syn degradation and reduced the expression of Hsc70, suggesting that the PREP inhibitor prevented α-syn aggregation by activating the CMA pathway. Similarly, KYP-2047 increased the LAMP-2A immunoreactivity and reduced the Hsc70 levels in mouse primary cortical neurons. When LAMP-2A was silenced by a siRNA, KYP-2047 increased the LC3BII/LC3BI ratio and accelerated the clearance of α-syn. Additionally, KYP-2047 induced CMA effectively also when MA was blocked by bafilomycin A1. Based on our results, we suggest that PREP might function as a core network node in MA-CMA crosstalk, and PREP inhibition can reduce α-syn levels via both main autophagy systems.


Chaperone-Mediated Autophagy/physiology , Macroautophagy/physiology , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Cells, Cultured , Chaperone-Mediated Autophagy/drug effects , Gene Knockout Techniques , HEK293 Cells , Humans , Macroautophagy/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Proline/analogs & derivatives , Proline/pharmacology
4.
J Neuroinflammation ; 18(1): 295, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34930303

BACKGROUND: Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. METHODS: Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. RESULTS: Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. CONCLUSION: Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Chaperone-Mediated Autophagy/physiology , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Chaperone-Mediated Autophagy/drug effects , Imidazoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Parkinson Disease/genetics , Proteolysis/drug effects , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
5.
Nat Cell Biol ; 23(12): 1255-1270, 2021 12.
Article En | MEDLINE | ID: mdl-34876687

Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.


ARNTL Transcription Factors/genetics , CLOCK Proteins/metabolism , Chaperone-Mediated Autophagy/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Aging/physiology , Animals , Lysosomes/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Photoperiod , Proteome/genetics , Proteostasis/physiology , Sleep Deprivation/physiopathology , Transcription, Genetic/genetics
6.
Food Chem Toxicol ; 158: 112706, 2021 Dec.
Article En | MEDLINE | ID: mdl-34848256

α-Synuclein, which is associated with Parkinson's disease, is cleared by the ubiquitin-proteasome system and autophagy lysosome system. Chaperon-mediated autophagy (CMA) and macroautophagy are major subtypes of autophagy and play a critical role in pesticide-induced α-synucleinopathy. In this study, we explored the role of CMA in diquat (DQ)-induced α-synucleinopathy and characterized the relationship between CMA and macroautophagy in the clearance of pathologic α-synuclein for the prevention of DQ neurotoxicity. DQ was cytotoxic to SH-SY5Y cells in a concentration-dependent manner, as shown by decreased cell viability and increased cytotoxicity. DQ treatment was also found to induce autophagy such as CMA and macroautophagy by monitoring the expression of Lamp2A and microtubule-associated protein 1A/1B light chain 3B (LC3-II) respectively. Following DQ treatment, SH-SY5Y cells were found to have induced phosphorylated and detergent-insoluble α-synuclein deposits, and MG132, a proteasome inhibitor, effectively potentiated both CMA and macroautophagy for preventing α-synuclein aggregation. Interestingly, CMA impairment by Lamp2A-knock down decreased the LC3II expression compared to in DQ-treated cells transfected with control siRNA. In Lamp2-knock down cells, pathologic α-synuclein was increased 12 h after DQ treatment, but there was no change observed at 24 h. In DQ-treated cells, macroautophagy by 3-methyladenine and bafilomycin inhibition increased Lamp2A expression, indicating an increase in CMA activity. In addition, CMA modulation affected apoptosis, and inhibiting lysosome activity by NH4Cl increased apoptosis in DQ-treated cells. An increase in autophagy was confirmed to compensate for the decrease in lysosome activity. Pretreatment with z-VAD-fmk, a pan-caspase inhibitor, significantly enhanced the macroautophagy response of DQ-exposed cells without alterations in Lamp2A expression. Our results suggest that CMA can regulate DQ-induced α-synucleinopathy cooperatively with macroautophagy, and crosstalk between macroautophagy and CMA plays an important role in DQ-induced cytotoxicity. Taken together, autophagy modulation may be a useful treatment strategy in pesticide-induced neurodegenerative disorders through preventing α-synucleinopathy.


Apoptosis/drug effects , Chaperone-Mediated Autophagy , Diquat/toxicity , Macroautophagy , alpha-Synuclein , Cell Line, Tumor , Cell Survival/drug effects , Chaperone-Mediated Autophagy/drug effects , Chaperone-Mediated Autophagy/physiology , Humans , Macroautophagy/drug effects , Macroautophagy/physiology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/metabolism
7.
Oncol Rep ; 46(4)2021 Oct.
Article En | MEDLINE | ID: mdl-34368882

The aim of the present study was to explore the effect of chaperon­mediated autophagy (CMA) through pyruvate kinase isoform M2 (PKM2) on the development of renal carcinoma (RCC) and its possible mechanisms. Lysosome­associated membrane protein 2A (LAMP­2A) and PKM2 expression levels were detected by collecting tissue samples from RCC patients. RNA interference was used to silence the LAMP­2A and PKM2 expression levels in renal cell line A498 to detect the proliferation, apoptosis and invasion of cells. The levels of mRNA and protein of related genes were also examined. Co­immunoprecipitation was used to detect the interaction between PKM2 and heat shock cognate 70 (HSC70). The results revealed that LAMP­2A and PKM2 expression levels were significantly increased in RCC tissues and cell lines (P<0.01). LAMP­2A silencing increased the expression level of PKM2 in A498 and 786­O cells. LAMP­2A and PKM2 silencing suppressed the proliferation and invasion and induced the apoptosis of A498 cells, and also affected the expression levels of related genes. Co­immunoprecipitation revealed the interaction between PKM2 and HSC70. In conclusion, CMA could affect the proliferation, invasion and apoptosis of RCC cells through PKM2, and our findings provided new biomarkers and targets for molecular targeted therapy of RCC.


Apoptosis/physiology , Carcinoma, Renal Cell/physiopathology , Carrier Proteins/metabolism , Cell Proliferation/physiology , Chaperone-Mediated Autophagy/physiology , Kidney Neoplasms/physiopathology , Lysosomal-Associated Membrane Protein 2/metabolism , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Adult , Aged , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness , Thyroid Hormone-Binding Proteins
8.
Neurochem Int ; 149: 105141, 2021 10.
Article En | MEDLINE | ID: mdl-34298079

Histone deacetylase 6 (HDAC6) has been shown to control major cell response pathways to the cytotoxic ubiquitinated aggregates in some protein aggregation diseases. However, it is not well known whether HDAC6 affects the aggregation process of α-synuclein (α-syn) in Parkinson's disease (PD). Previously, we demonstrated that HDAC6 inhibition exacerbated the nigrostriatal dopamine neurodegeneration and up-regulated α-syn oligomers in a heat shock protein 90 (Hsp90)-dependent manner in PD mouse model. Here, we further showed that HDAC6 overexpression partly improved the behavior deficits of the PD model and alleviated the nigrostriatal dopamine (DA) neurons injury. Furthermore, HDAC6 was found to regulate α-syn oligomers levels through activation of chaperone-mediated autophagy (CMA). During this process, Hsp90 deacetylation mediated the crosstalk between HDAC6 and lysosome-associated membrane protein type 2A. Liquid chromatography-tandem mass spectrometry and mutational analysis showed that acetylation status Hsp90 at the K489 site was a strong determinant for HDAC6-induced CMA activation, α-syn oligomers levels, and cell survival in the cell model of PD. Therefore, our findings uncovered the mechanism of HDAC6 in the PD model that HDAC6 regulated α-syn oligomers levels and DA neurons survival partly through modulating CMA, and Hsp90 deacetylation at the K489 site mediated the crosstalk between HDAC6 and CMA. HDAC6 and its downstream effectors appear as key modulators of the cytotoxic α-syn aggregates, which deserve further investigations to evaluate their values as potential therapeutic targets in PD.


Chaperone-Mediated Autophagy/physiology , HSP90 Heat-Shock Proteins/metabolism , Histone Deacetylase 6/metabolism , Parkinsonian Disorders/metabolism , Protein Aggregates/physiology , alpha-Synuclein/metabolism , Acetylcysteine/analogs & derivatives , Acetylcysteine/toxicity , Animals , Chaperone-Mediated Autophagy/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Protein Aggregates/drug effects , alpha-Synuclein/antagonists & inhibitors
9.
Autophagy ; 17(8): 2040-2042, 2021 08.
Article En | MEDLINE | ID: mdl-34110247

Different types of autophagy co-exist in all mammalian cells, however, the specific contribution of each of these autophagic pathways to the maintenance of cellular proteostasis and cellular function remains unknown. In this work, we have investigated the consequences of failure of chaperone-mediated autophagy (CMA) in neurons and compared the impact, on the neuronal proteome, of CMA loss to that of macroautophagy loss. We found that these autophagic pathways are non-redundant and that CMA is the main one responsible for maintenance of the metastable proteome (the one at risk of aggregation). We demonstrate that loss of CMA, as the one that occurs in aging, has a synergistic effect with the proteotoxicity associated with neurodegenerative conditions such as Alzheimer disease (AD) and, conversely, that, pharmacological enhancement of CMA is effective in improving both behavior and pathology in two different AD mouse models.


Autophagy/physiology , Chaperone-Mediated Autophagy/physiology , Lysosomes/physiology , Proteostasis/physiology , Aging/metabolism , Animals , Humans , Lysosomes/metabolism , Neurons/metabolism
10.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Article En | MEDLINE | ID: mdl-33891876

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Aging/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Chaperone-Mediated Autophagy/physiology , Neurons/metabolism , Proteostasis , Aging/pathology , Alzheimer Disease/pathology , Animals , Brain/pathology , Casein Kinase I/genetics , Chaperone-Mediated Autophagy/genetics , Disease Models, Animal , Female , Male , Mice , Neurons/pathology , Proteome
11.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article En | MEDLINE | ID: mdl-33672324

Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell homeostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA's role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery. In this review, the role covered by CMA in oncology is discussed with a focus on its relevance in glioma. Molecular correlates of CMA importance in glioma responsiveness to treatment are described to identify new early efficacy biomarkers and new therapeutic targets to overcome resistance.


Chaperone-Mediated Autophagy , Glioma/drug therapy , Glioma/pathology , Antineoplastic Agents, Alkylating/pharmacology , Chaperone-Mediated Autophagy/drug effects , Chaperone-Mediated Autophagy/physiology , Glioma/metabolism , Humans , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Proteins/metabolism , Temozolomide/pharmacology
12.
Int J Mol Sci ; 22(4)2021 Feb 06.
Article En | MEDLINE | ID: mdl-33562118

The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule expressed in many cell types, including triple-negative and non-triple-negative breast cancer cells. It affects breast cancer growth and crosstalk with estrogen receptor signaling. Normally, this receptor is degraded shortly after ligand activation via the 26S proteasome. Here, we report that AHR undergoes chaperone-mediated autophagy in MDA-MB-468 triple-negative breast cancer cells. This lysosomal degradation of AHR exhibits the following characteristics: (1) it is triggered by 6 amino-nicotinamide, starvation, and piperazinylpyrimidine compound Q18; (2) it is not observed in non-triple-negative breast cancer cells (MCF-7, T47D, and MDA-MB-361); (3) it can be inhibited by progesterone receptor B but not estrogen receptor alpha; (4) it can be reversed by chloroquine but not MG132; (5) it requires LAMP2A; and (6) it involves AHR-HSC70 and AHR-LAMP2A interactions. The NEKFF sequence localized at amino acid 558 of human AHR appears to be a KFERQ-like motif of chaperone-mediated autophagy, responsible for the LAMP2A-mediated AHR protein degradation.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Chaperone-Mediated Autophagy/physiology , Lysosomal-Associated Membrane Protein 2/metabolism , Proteolysis , Receptors, Aryl Hydrocarbon/metabolism , Triple Negative Breast Neoplasms/pathology , Amino Acid Sequence , Cell Line, Tumor , Chloroquine/pharmacology , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Estrogen Receptor alpha/metabolism , Humans , Leupeptins/pharmacology , Lysosomes/metabolism , MCF-7 Cells , RNA Interference , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Signal Transduction/physiology
13.
Nature ; 591(7848): 117-123, 2021 03.
Article En | MEDLINE | ID: mdl-33442062

The activation of mostly quiescent haematopoietic stem cells (HSCs) is a prerequisite for life-long production of blood cells1. This process requires major molecular adaptations to allow HSCs to meet the regulatory and metabolic requirements for cell division2-4. The mechanisms that govern cellular reprograming upon stem-cell activation, and the subsequent return of stem cells to quiescence, have not been fully characterized. Here we show that chaperone-mediated autophagy (CMA)5, a selective form of lysosomal protein degradation, is involved in sustaining HSC function in adult mice. CMA is required for protein quality control in stem cells and for the upregulation of fatty acid metabolism upon HSC activation. We find that CMA activity in HSCs decreases with age and show that genetic or pharmacological activation of CMA can restore the functionality of old mouse and human HSCs. Together, our findings provide mechanistic insights into a role for CMA in sustaining quality control, appropriate energetics and overall long-term HSC function. Our work suggests that CMA may be a promising therapeutic target for enhancing HSC function in conditions such as ageing or stem-cell transplantation.


Chaperone-Mediated Autophagy/physiology , Hematopoietic Stem Cells/physiology , Adult , Aged , Aging , Animals , Cell Self Renewal , Cells, Cultured , Chaperone-Mediated Autophagy/drug effects , Chaperone-Mediated Autophagy/genetics , Energy Metabolism , Female , Glycolysis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Linoleic Acid/metabolism , Male , Mice , Middle Aged , Multiple Myeloma/pathology , Rejuvenation , Young Adult
14.
Autophagy ; 17(3): 612-625, 2021 03.
Article En | MEDLINE | ID: mdl-32013718

Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis. CMA modulates proteomic organization through selective protein degradation, with targets including metabolic enzymes, cell growth regulators, and neurodegeneration-related proteins. CMA activity is low in ad libitum-fed rodents but is increased by prolonged fasting. AKT negatively regulates CMA at the lysosomal membrane by phosphorylating and inhibiting the CMA regulator GFAP. We have previously reported that long-lived Pou1f1/Pit1 mutant (Snell) mice and ghr (growth hormone receptor) knockout mice (ghr KO) have lower AKT activity when fed compared to littermate controls, suggesting the hypothesis that these mice have increased baseline CMA activity. Here, we report that liver lysosomes from fed Snell dwarf mice and ghr KO mice have decreased GFAP phosphorylation and increased CMA substrate uptake activity. Liver lysosomes isolated from fed Snell dwarf mice and ghr KO mice injected with the protease inhibitor leupeptin had increased accumulation of endogenous CMA substrates, compared to littermate controls, suggesting an increase in CMA in vivo. Mice with liver-specific ablation of GH (growth hormone) signaling did not have increased liver CMA, suggesting that a signaling effect resulting from a loss of growth hormone in another tissue causes enhanced CMA in Snell dwarf and ghr KO mice. Finally, we find Snell dwarf mice have decreased protein levels (in liver and kidney) of CIP2A, a well-characterized CMA target protein, without an associated change in Cip2a mRNA. Collectively, these data suggest that CMA is enhanced downstream of an endocrine change resulting from whole-body ablation of GH signaling.Abbreviations: CMA: chaperone-mediated autophagy; GH: growth hormone; ghr KO: growth hormone receptor knockout; LAMP2A: splice variant 1 of Lamp2 transcript; LC3-I: non-lipidated MAP1LC3; LC3-II: lipidated MAP1LC3; Li-ghr KO: liver-specific ghr knockout; MA: macroautophagy; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; PBS: phosphate-buffered saline.


Chaperone-Mediated Autophagy/genetics , Growth Hormone/metabolism , Lysosomes/metabolism , Signal Transduction/genetics , Animals , Chaperone-Mediated Autophagy/physiology , Liver/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice, Knockout , Signal Transduction/physiology
15.
Neuropathol Appl Neurobiol ; 47(2): 198-209, 2021 02.
Article En | MEDLINE | ID: mdl-32722888

AIMS: Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS: We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS: GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS: CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.


Cerebellar Ataxia/pathology , Cerebellum/pathology , Chaperone-Mediated Autophagy/physiology , Lysosomal-Associated Membrane Protein 2/metabolism , Nerve Degeneration/pathology , Neurons/pathology , Animals , Cerebellar Ataxia/metabolism , Cerebellum/metabolism , Mice, Inbred ICR , Nerve Degeneration/metabolism , Neurons/metabolism , Phenotype
16.
J Immunol ; 205(5): 1256-1267, 2020 09 01.
Article En | MEDLINE | ID: mdl-32699159

Cigarette smoke (CS) induces accumulation of misfolded proteins with concomitantly enhanced unfolded protein response (UPR). Increased apoptosis linked to UPR has been demonstrated in chronic obstructive pulmonary disease (COPD) pathogenesis. Chaperone-mediated autophagy (CMA) is a type of selective autophagy for lysosomal degradation of proteins with the KFERQ peptide motif. CMA has been implicated in not only maintaining nutritional homeostasis but also adapting the cell to stressed conditions. Although recent papers have shown functional cross-talk between UPR and CMA, mechanistic implications for CMA in COPD pathogenesis, especially in association with CS-evoked UPR, remain obscure. In this study, we sought to examine the role of CMA in regulating CS-induced apoptosis linked to UPR during COPD pathogenesis using human bronchial epithelial cells (HBEC) and lung tissues. CS extract (CSE) induced LAMP2A expression and CMA activation through a Nrf2-dependent manner in HBEC. LAMP2A knockdown and the subsequent CMA inhibition enhanced UPR, including CHOP expression, and was accompanied by increased apoptosis during CSE exposure, which was reversed by LAMP2A overexpression. Immunohistochemistry showed that Nrf2 and LAMP2A levels were reduced in small airway epithelial cells in COPD compared with non-COPD lungs. Both Nrf2 and LAMP2A levels were significantly reduced in HBEC isolated from COPD, whereas LAMP2A levels in HBEC were positively correlated with pulmonary function tests. These findings suggest the existence of functional cross-talk between CMA and UPR during CSE exposure and also that impaired CMA may be causally associated with COPD pathogenesis through enhanced UPR-mediated apoptosis in epithelial cells.


Apoptosis/physiology , Chaperone-Mediated Autophagy/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Unfolded Protein Response/physiology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Lung/metabolism , Lung/pathology , Lysosomes/metabolism , Lysosomes/pathology , NF-E2-Related Factor 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Nicotiana/adverse effects
17.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Article En | MEDLINE | ID: mdl-32556197

CONTEXT: Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. Chaperone-mediated autophagy (CMA), 1 type of autophagy, is thought to promote or suppress cancer development in different cancer types. However, the effect of CMA on PTC development and the underlying mechanisms remain unknown. OBJECTIVE: To determine whether CMA plays implied critical roles in the development of PTC. DESIGN: We investigated the association between CMA and PTC development in PTC tissues and normal thyroid tissues by detecting the key protein of CMA, lysosome-associated membrane protein type 2A (LAMP2A), using quantitative polymerase chain reaction (PCR) and immunohistochemistry, which were further validated in the TGCA dataset. The effect of CMA on PTC development was studied by cell proliferation, migration, and apoptosis assays. The underlying mechanisms of peroxisome proliferator-activated receptor γ (PPARγ)-stromal cell-derived factor 1 (SDF1)/ C-X-C motif chemokine receptor 4 (CXCR4) signaling were clarified by western blotting, quantitative PCR, and rescue experiments. Knockdown and tamoxifen were used to analyze the effect of estrogen receptor (ER) α on CMA. RESULTS: Our study confirmed that CMA, indicated by LAMP2A expression, was significantly increased in PTC tumor tissues and cell lines, and was associated with tumor size and lymph node metastasis of patients. Higher CMA in PTC promoted tumor cell proliferation and migration, thereby promoting tumor growth and metastasis. These effects of CMA on PTC were exerted by decreasing PPARγ protein expression to enhance SDF1 and CXCR4 expression. Furthermore, CMA was found positively regulated by ERα signaling in PTC. CONCLUSION: Our investigation identified CMA regulated by ERα promoting PTC tumor progression that enhanced tumor cell proliferation and migration by targeting PPARγ-SDF1/CXCR4 signaling, representing a potential target for treatment of PTC.


Antineoplastic Agents, Hormonal/pharmacology , Carcinogenesis/pathology , Chaperone-Mediated Autophagy/physiology , Estrogen Receptor alpha/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chaperone-Mediated Autophagy/drug effects , Chaperone-Mediated Autophagy/genetics , Chemokine CXCL12/metabolism , Datasets as Topic , Disease Progression , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Female , Gene Knockdown Techniques , Humans , Male , Mice , Middle Aged , PPAR gamma/metabolism , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/surgery , Thyroid Gland/pathology , Thyroid Gland/surgery , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/surgery , Thyroidectomy , Xenograft Model Antitumor Assays
18.
J Neurotrauma ; 37(15): 1687-1695, 2020 08 01.
Article En | MEDLINE | ID: mdl-32233738

Autophagy is the degradation process of dysfunctional intracellular components and has a crucial function in various human diseases. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). CMA is a major route for the elimination of cellular aberrant proteins and can provide a cytoprotective effect. The present study investigated the expression of lysosome-associated membrane protein type 2A (LAMP2A), which is the hallmark of CMA activity, in damaged neural tissue after spinal cord injury (SCI) in mice. The number of LAMP2A-expressing cells was significantly increased at the lesion following SCI. The increased number of LAMP2A-positive cells was observed from 24 h and peaked at 3 days after injury. A western blot analysis confirmed that the level of LAMP2A protein was significantly increased in the injured spinal cord compared with the uninjured cord. On double staining for LAMP2A and different neural cell type markers, the increased expression of LAMP2A was observed in neurons, astrocytes, oligodendrocytes, and microglia/macrophages following injury. An electron microscopic analysis showed that secondary lysosomes were increased in damaged neurons at the lesion site. Immunoelectron microscopy revealed that the gold particles with anti-LAMP2A antibody were frequently localized at the secondary lysosomes in the injured site. These findings indicated that CMA was clearly activated in damaged neural tissue after SCI. The activation of CMA may contribute to the elimination of intracellular aberrant proteins and exert a neuroprotective effect following SCI.


Chaperone-Mediated Autophagy/physiology , Lysosomal-Associated Membrane Protein 2/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Animals , Female , Lysosomal-Associated Membrane Protein 2/analysis , Mice , Mice, Inbred C57BL , Thoracic Vertebrae/injuries
19.
Histol Histopathol ; 35(7): 637-644, 2020 Jul.
Article En | MEDLINE | ID: mdl-31965560

Chaperone-mediated autophagy (CMA), a selective form of autophagy, where cellular proteins with KFERQ-like motif are targeted to the lysosome for degradation, is necessary to maintain cellular homeostasis. The role of CMA in neurodegenerative diseases has been extensively studied in the past decades, with defects in the pathway being strongly associated with disease. Recently, accumulating evidence has demonstrated a consistent increase in basal CMA activity in a wide array of cancer cell lines and human tumor biopsies, suggesting a potential link between CMA and cancer. On the other hand, an anti-oncogenic role for CMA under physiological conditions in non-transformed cells is also proposed despite the pro-tumorigenic function of CMA in cancer cells. The growing number of connections between CMA and cancers has generated interest in modulating CMA activity for therapeutic purposes. Here, we describe recent advances in the understanding of the molecular regulation of CMA, and discuss the evidence in support of the contribution of CMA dysfunction to cancers.


Chaperone-Mediated Autophagy/physiology , Neoplasms/pathology , Animals , Humans
20.
Trends Endocrinol Metab ; 31(1): 53-66, 2020 01.
Article En | MEDLINE | ID: mdl-31699565

Autophagy contributes to cellular quality control and energetics through lysosomal breakdown and recycling of essential cellular components. Chaperone-mediated autophagy (CMA) adds to these autophagic functions the ability to timely and selectively degrade single tagged proteins to terminate their cellular function and, in this way, participate in the regulation of multiple cellular processes. Many cancer cells upregulate CMA for protumorigenic and prosurvival purposes. However, growing evidence supports a physiological role for CMA in limiting malignant transformation. Understanding the mechanisms behind this functional switch of CMA from antioncogenic to pro-oncogenic is fundamental for targeting CMA in cancer treatment. We summarize current understanding of CMA functions in cancer biology and discuss the basis for its context-dependent dual role in oncogenesis.


Chaperone-Mediated Autophagy/physiology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Carcinogenesis/metabolism , Chaperone-Mediated Autophagy/genetics , Humans , Lysosomes/metabolism
...